RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2018

THIRD YEAR [BATCH 2016-19]

CHEMISTRY [Honours]

Date : 24/12/2018 Time : 11 am - 1 pm

Paper : VI

Full Marks : 50

[Attempt one question from each Unit]

<u>Unit – I</u>

[9 marks]

1.	a)	What is Crystal Field Stabilization Energy (CFSE)? Calculate the CFSE value of octahedral complexes of d ⁶ species in high and low spin state. Given : $\Delta_0=25000 \text{ cm}^{-1}$ and average energy of pairing per electron (P) = 15000 cm ⁻¹	1
	b)	More stable state of Cu is +2 while that of Au is +3. Explain in the light of CFT. [3]	1
	c)	Hydroxide is a weaker ligand than water, even though hydroxide is negatively charged and	
		water is neutral. Explain. [3]]
•			
2.	a)	which one of the following will have the higher Jahn-Teller distortion in octahedral environment? (i) Co(III) High-spin (ii) Co(II) low-spin	1
	h)	$C_{02}O_4$ is a normal spinel while Fe_2O_4 is an inverse spinel – Explain [2]	ו ו
	c)	Explain the following with the help of VBT:	1
	- /	(i) Co^{2+} -octahedral complexes are reducing agent, (ii) All octahedral complex of Ni ²⁺ must be outer orbital complexes. [1.5+1.5	1
	d)	What do you mean by the term "octahedral site stabilization energy (OSSE)"? Explain with an	-
		example. [1+2]]
		<u>Unit – II</u> [8 marks]]
3.	a)	How many absorption bands are expected in the electronic spectrum of $\left[Ni(H_2O)_{\epsilon}\right]^{2+}$?	
	,	Assign the bands indicating Δ_0 . [3]	1
	b)	Explain the following: (i) Intensity of LMCT is much higher than d-d transition.	
		(ii) $\left[\operatorname{NiCl}_{4}\right]^{2^{-}}$ is paramagnetic while $\left[\operatorname{pdCl}_{4}\right]^{2^{-}}$ is diamagnetic nature. [2+2	1
	c)	Diamagnetic $[Co(NH)]$ E transforms to the paramagnetic when heated to $115^{\circ}C$ Why?	1
	0)	[1]	1
4.	a)	The absorption spectrum of $\text{Ti}(\text{OH}_2)_6^{3+}$ has a band at 20,300 cm ⁻¹ . Do you expect v_{max} to be	
		less than, greater than or equal to 20,300 cm ⁻¹ in the spectrum of $\left[\operatorname{Ti}(\operatorname{NCS})_{6}\right]^{3-}$? Explain your	
		answer. [2]]
	b)	Show the Orgel diagram of $\text{Co}^{2+}(\text{Td})$ and V^{3+} (Oh). How many d-d transitions do you expect from their?	1
	c)	What is super exchange? Explain using an example.[2]	1
	,	<u>Unit – III</u> [8 marks]]
5	a)	Hydrolysis rate of Mg-ATP is faster than ATP Comment	1
5.	u) b)	Explain the biological importance of Ca^{2+} and Mg^{2+} . [2]	ו ו
	c)	Write a short note on Na ⁺ - ion pump. [3]]
	d)	Explain why the intravenous fluids used in hospital procedures contains NaCl? [1]]
6.	a)	Discuss the biological importance of creatine-phosphocreatine interconversions. [2]]

b)	Name two of the ultratrace elements in biological systems. Explain the role of one of the	
	ultratrace element.	[2]

- c) heavy metals are in general toxic, explain with reasons.
- d) Define active transport and passive transport in biological system.

[2]

[2]

[1]

erent modes of binding of NO in metal nitrosyl? How would you identify the a?	[2]
$\int \left[\left(\prod_{k=1}^{n} \prod_{k=1}^{n} \right) \operatorname{Im}(\operatorname{CO}_{3} \right] \text{ and } \left[\prod_{k=1}^{n} -\left(\operatorname{C}_{5} \prod_{5}^{n} \right) \operatorname{Im}(\operatorname{CO}_{3} \right]_{2} \right]$ en $\left[\operatorname{Co}_{2}(\operatorname{CO}_{8} \right]$ reacts with i) NO ii) acetylene?	[3]
The provided and $\int n^5 = (C + M)M(CO)$ and $\int n^5 = (C + M)M(CO)$	[3]
It and how it prepared? Explain the structure and bonding. [1-	+2+2]
nen metallic iron reacts with cyclopentadiene in presence of diethyl amine? ons involved and mention the role of diethylamine. Discuss the structure of	- 2 - 2]
<u>Unit – V</u> [9 m	narks]
tive effect?	[1]
Explain its action of mechanism and medicinal use. ism of biological nitrogen fixation assisted by a metalloenzyme.	[4] [3]
ect?	[2]
the biological function of haemoglobin, indicating the role of metal ions ve site of the protein.	[3]
sequence accounting for why simple Fe-porphyrin complexes are unable to y , but instead give products that include oxo-bridged dinuclear Fe(III) – .	[3]
1 8	sequence accounting for why simple Fe-porphyrin complexes are unable to

11. a)	The compound $\left[\operatorname{Fe}_{4}(\operatorname{Cp})_{4}(\operatorname{CO})_{4}\right]$ is a dark-green solid. Its IR spectrum shows a single CO stretch	at
	1640 cm ⁻¹ . The ¹ H-NMR spectrum is a single line, even at low temperature. From this spectroscopie	2
	information and the CVE, propose a structure for $[Fe_4(Cp)_4(CO)_4]$.	[3]
1 \		

- b) What are the characteristic features of Wilkinson's catalyst? Discuss the steps of catalysis by this catalyst in hydrogenation of alkene. [1+2]
- 'CO-insertion' in $CH_3Mn(CO)_5$ is actually a methyl migration reaction Explain. [2] c)
- 12. a) Predict the molecular geometries of the followings:-

i)

$$\begin{bmatrix} \operatorname{Fe}_{4}C(\operatorname{CO})_{13} \end{bmatrix} \quad \text{ii} \begin{bmatrix} \operatorname{Rh}_{6}C(\operatorname{CO})_{15} \end{bmatrix}$$
[2]

- b) Draw the catalytic cycle for the Zieglar-Natta polymerization of propene. Explain each of the steps involved and predict the physical properties of the polymer produces. [3] [2]
- c) $Cr_2Cl_9^{3-}$ is paramagnetic while $W_2Cl_9^{3-}$ is diamagnetic explain.
- d) Show any one application of metal clusters.

(2)